Piecewise Linear Convex Functions

A piecewise linear convex function is a function that is defined by a set of linear functions, each defined over a different region of the domain. The piecewise linear convex function f:RnRf: \mathbb{R}^n \to \mathbb{R} can be written as:

f(x)=maxi=1,,m(aix+di)f(\mathbf{x}) = \max_{i=1, \dots, m} (\mathbf{a}_i' \mathbf{x} + d_i)

A special case of piecewise linear convex functions is the absolute value function, which is defined by f(x)=x=max(x,x)f(x) = |x| = \max(x, -x).

Piecewise linear convex constraints

Piecewise linear convex constraints are constraints that are defined by a set of piecewise linear convex functions. For example:

minimizecxsubject tomaxi=1,,m(fix+di)bAxbx0\begin{align*} \textrm{minimize} \quad & \mathbf{c}' \mathbf{x} \\ \textrm{subject to} \quad & \max_{i=1, \dots, m} (\mathbf{f}_i' \mathbf{x} + d_i) \leq b \\ & \mathbf{A} \mathbf{x} \geq \mathbf{b} \\ & \mathbf{x} \geq 0 \end{align*}

In this case, the constraint maxi=1,,m(aix+di)b\max_{i=1, \dots, m} (\mathbf{a}_i' \mathbf{x} + d_i) \leq b is a piecewise linear convex constraint. Such constraints are equivalent to a set of linear constraints as follows:

fix+dibi=1,,m\mathbf{f}_i' \mathbf{x} + d_i \leq b \quad \forall i = 1, \dots, m

Hence, piecewise linear convex constraints can be reformulated as a set of linear constraints.

Piecewise linear convex objective functions

Piecewise linear convex objective functions are objective functions that are defined by a set of piecewise linear convex functions. Consider the following optimization problem:

minimizemaxi=1,,m(cix+di)subject toAxbx0\begin{align*} \textrm{minimize} \quad & \max_{i=1, \dots, m} (\mathbf{c}_i' \mathbf{x} + d_i) \\ \textrm{subject to} \quad & \mathbf{A} \mathbf{x} \geq \mathbf{b} \\ & \mathbf{x} \geq 0 \end{align*}

The objective function of this optimization problem is a piecewise linear convex function. The objective function is equivalent to minimizing zz subject to zcix+diz \geq \mathbf{c}_i' \mathbf{x} + d_i for all i=1,,mi = 1, \dots, m.

Therefore, this optimization problem can be reformulated as follows:

minimizezsubject tozcix+dii=1,,mAxbx0\begin{align*} \textrm{minimize} \quad & z \\ \textrm{subject to} \quad & z \geq \mathbf{c}_i' \mathbf{x} + d_i \quad \forall i = 1, \dots, m \\ & \mathbf{A} \mathbf{x} \geq \mathbf{b} \\ & \mathbf{x} \geq 0 \end{align*}

Last updated